Redis的高效离不开它底层的数据结构设计,本文对其做一个简单的汇总。
String
String 类型的底层的数据结构实现主要是 int 和 SDS(简单动态字符串)。SDS 和我们认识的 C 字符串不太一样,之所以没有使用 C 语言的字符串表示,因为 SDS 相比于 C 的原生字符串:
- SDS 不仅可以保存文本数据,还可以保存二进制数据。因为
SDS
使用len
属性的值而不是空字符来判断字符串是否结束,并且 SDS 的所有 API 都会以处理二进制的方式来处理 SDS 存放在buf[]
数组里的数据。所以 SDS 不光能存放文本数据,而且能保存图片、音频、视频、压缩文件这样的二进制数据。 - SDS 获取字符串长度的时间复杂度是 O(1)。因为 C 语言的字符串并不记录自身长度,所以获取长度的复杂度为 O(n);而 SDS 结构里用 len 属性记录了字符串长度,所以复杂度为 O(1)。
- Redis 的 SDS API 是安全的,拼接字符串不会造成缓冲区溢出。因为 SDS 在拼接字符串之前会检查 SDS 空间是否满足要求,如果空间不够会自动扩容,所以不会导致缓冲区溢出的问题。
List
List 类型的底层数据结构是由双向链表或压缩列表实现的:
- 如果列表的元素个数小于 512 个(默认值,可由 list-max-ziplist-entries 配置),列表每个元素的值都小于 64 字节(默认值,可由 list-max-ziplist-value、 配置),Redis 会使用压缩列表作为 List 类型的底层数据结构;
- 如果列表的元素不满足上面的条件,Redis 会使用双向链表作为 List 类型的底层数据结构;
但是在 Redis 3.2 版本之后,List 数据类型底层数据结构就只由 quicklist 实现了,替代了双向链表和压缩列表
Set
Set 类型的底层数据结构是由哈希表或整数集合实现的:
- 如果集合中的元素都是整数且元素个数小于
512
(默认值,set-maxintset-entries
配置)个,Redis 会使用整数集合作为 Set 类型的底层数据结构; - 如果集合中的元素不满足上面条件,则 Redis 使用哈希表作为 Set 类型的底层数据结构。
Zset
Zset 类型的底层数据结构是由压缩列表或跳表实现的:
- 如果有序集合的元素个数小于
128
个,并且每个元素的值小于64
字节时,Redis 会使用压缩列表作为 Zset 类型的底层数据结构; - 如果有序集合的元素不满足上面的条件,Redis 会使用跳表作为 Zset 类型的底层数据结构;
在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。
Hash
Hash 类型的底层数据结构是由压缩列表或哈希表实现的:
- 如果哈希类型元素个数小于 512 个(默认值,可由 hash-max-ziplist-entries 配置),所有值小于 64 字节(默认值,可由 hash-max-ziplist-value 配置)的话,Redis 会使用压缩列表作为 Hash 类型的底层数据结构;
- 如果哈希类型元素不满足上面条件,Redis 会使用哈希表作为 Hash 类型的 底层数据结构。
在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。
BitMap
Bitmap 本身是用 String 类型作为底层数据结构实现的一种统计二值状态的数据类型。String 类型是会保存为二进制的字节数组,所以,Redis 就把字节数组的每个 bit 位利用起来,用来表示一个元素的二值状态,你可以把 Bitmap 看作是一个 bit 数组。
Geo
GEO 本身并没有设计新的底层数据结构,而是直接使用了 Sorted Set 集合类型。
GEO 类型使用 GeoHash 编码方法实现了经纬度到 Sorted Set 中元素权重分数的转换,这其中的两个关键机制就是「对二维地图做区间划分」和「对区间进行编码」。一组经纬度落在某个区间后,就用区间的编码值来表示,并把编码值作为 Sorted Set 元素的权重分数。
这样一来,我们就可以把经纬度保存到 Sorted Set 中,利用 Sorted Set 提供的“按权重进行有序范围查找”的特性,实现 LBS 服务中频繁使用的“搜索附近”的需求。
HyperLogLog
HyperLogLog 算法来源于论文 HyperLogLog the analysis of a near-optimal cardinality estimation algorithm,想要了解 HLL 的原理,先要从伯努利试验说起,伯努利实验说的是抛硬币的事。一次伯努利实验相当于抛硬币,不管抛多少次只要出现一个正面,就称为一次伯努利实验。
我们用 k 来表示每次抛硬币的次数,n 表示第几次抛的硬币,用 k_max 来表示抛硬币的最高次数,最终根据估算发现 n 和 k_max 存在的关系是 n=2^(k_max)
在 Redis 中使用 HLL 插入数据,相当于把存储的值经过 hash 之后,再将 hash 值转换为二进制,存入到不同的桶中,这样就可以用很小的空间存储很多的数据,统计时再去相应的位置进行对比很快就能得出结论,这就是 HLL 算法的基本原理。